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Abstract Kidney transplant is the reference treatment for patients with end-stage renal disease, but patients may
develop long-term rejection of the graft. However, some patients do not reject the transplant, but instead are operationally
tolerant state despite withdrawal of immunosuppressive treatment. In this second article we outline a microarray-based
identification of key leader genes associated respectively to rejection and to operational tolerance of the kidney transplant
in humans by utilizing a non/statistical bioinformatic approach based on the identification of ‘‘key genes,’’ either as those
mostly changing their expression, or having the strongest interconnections. A uniquely informative picture emerges on the
genes controlling the human transplant from the detailed comparison of these findings with the traditional statistical SAM
(Tusher et al. [2001] Proc Natl Acad Sci USA 98:5116–5121) analysis of the microarrays and with the clinical study carried
out in the accompanying part I article. J. Cell. Biochem. 103: 1693–1706, 2008. � 2007 Wiley-Liss, Inc.
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Kidney transplant is the reference treatment
for patients with end-stage renal disease. The
advent of this therapeutic option has notably
reduced morbidity and mortality in patients
with this disease. Moreover, improvements in
the clinical management of transplant recipi-

ents have contributed to increase graft survival
and to limit the risks of rejection in kidney
transplantation by proper pharmacological
immunosuppression [Hariharan et al., 2000].
However, such lifelong immunosuppression,
which poorly influences long-term chronic
transplant dysfunction [Opelz, 1995], may
promote tumor growth by a direct effect on
tumor cells [Hojo et al., 1999] and may also
decrease recipient immune responses to patho-
gens, including oncogeneic viruses [Dantal
et al., 1998; Soulillou and Giral, 2001].
In humans, immunosuppression withdrawal
leads, in most cases, to transplant rejection.
Nevertheless, certain rare patients (‘operation-
ally tolerant’) maintain stable graft function
despite the absence of treatment, suggesting
that a state of nonresponsiveness can be
achieved in clinical transplantation [Strober
et al., 2000]. This phenomenon can occur in
liver transplantation [Thomson et al., 2001;
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Mazariegos et al., 2005] and in kidney recipients
[Roussey-Kesler et al., 2006]. The understand-
ing of the molecular mechanisms of tolerance in
humans is therefore of central importance.
Tolerant patients, indeed, offer a unique oppor-
tunity to study the clinical and biological
characteristics potentially associated with tol-
erance. DNA microarrays are one of the most
promising tools for molecular genomics [Butte
2002; Nicolini et al., 2002, 2006; Nicolini, 2006]
capable to draw a picture of a whole genome.
Recently, the employment of non-statistical
bioinformatics and data-mining techniques
has been proposed in order to identify ab initio
a set of genes involved in a certain process and to
make a hierarchy among them [Sivozhelezov
et al., 2006]. The hierarchy is based upon the
number of interactions of every single gene with
all the other genes of the set, according to web-
available databases such as STRING [von
Mering et al., 2005] based on physical contact,
involvement in the same metabolic pathway or
co-citation in abstracts. The leader gene
approach [Sivozhelezov et al., 2006] was applied
for the first time in combination with micro-
array technology [Giacomelli and Nicolini,
2006; Nicolini et al., 2006] on human T lympho-
cytes stimulated to enter cell cycle with PHA
[Abraham et al., 1980]. It was interesting to
notice how genes with the highest number of
interactions were invariably a very low number
(only 6 for human T lymphocytes cell cycle) and
that those genes, that were defined as ‘leader
genes,’ are actually playing a central role in the
process, namely at the transition or progression
of cell cycle phases [Modiano et al., 2000;
Kawabe et al., 2002; Oster et al., 2002; Baluch-
amy et al., 2003; Torgler et al., 2004] and
inhibiting the whole cyclin complexes [Jerry
et al., 2002; Chang et al., 2004].

In this article, we have applied this approach
[Nicolini et al., 2006] to a unique situation of
spontaneous tolerance of a mismatched kidney
graft in human. This article suggests that even
applied to a complex in vivo situation, this
approach can allow to identify key genes, which
may offer new opportunity of monitoring or
modulating immune response against allograft.
However several open problems and questions
still remain open in the application of nano-
genomics to medicine [Nicolini et al., 2006]
and it is hoped that these studies of human
kidney transplant will shed new light and
clarifications.

METHODS

Microarray Datasets

The experimental datasets are derived from
pangenomic microarrays fully described else-
where [Braud et al., 2007]. Fifty-one individuals
were included in the study: 8 patients tolerating
a kidney graft (TOL) without any treatment and
18 patients with chronic rejection (CR) were
evaluated against 8 healthy volunteers (HV)
using a subset of the pangenomic (more than
35,000 genes) array displaying 6,865 genes
(hence, ‘‘individual fullchip’’). For every patient,
two independent DNA amplifications were
used. Data were expressed as mean values
(log 2) of the relative intensities [Cy3 (grafted
patient)/Cy5 (pool of 169 kidney grafted recip-
ients with stable graft function)]. This database
emerges from our previous similar studies of
original datasets called west-genopole based on
different microarrays utilizing different gene
nomenclature and obtained from 14 CR, 11 TOL
and 6 HV patients (hence, ‘‘pool fullchip’’). Note
that the pool fullchip data will be further used
for comparison of various methods of micro-
array data processing only, while functional and
diagnostic conclusions will be drawn from the
individual fullchip.

In every patient of both datasets, genes
appear distributed in a Gaussian curve, being
either upregulated or downregulated in both
the CR and the TOL patients (see Fig. 1 for the
‘‘pool fullchip’’ and also Fig. ES1a,b). There is no
discontinuity in gene expression-fluorescence
intensity distribution. For the fullchip of rejec-
tion and tolerance gene subsets, distribution of
their expression levels, both in natural and log
scale, is analyzed in Figure ES2. In this graph,
the genes are numbered according to the
fluorescence intensity resulting from the differ-
ence (CR–TOL), defined, for each of the given
gene, as the difference between ‘‘average log 2
(expression) values for rejection cases� aver-
average log 2 (expression) value for tolerance
cases,’’ the simplest imaginable discrimination
criterion. Thus, negative values correspond
to pro-tolerance genes, and positive to pro-
rejection genes.

Gene Identification

Once the gene set has been identified, the
leader gene algorithm allows to identify the
genes with maximum connectivity, as fully
described elsewhere [Sivozhelezov et al.,
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2006]. Interactions between each pair of genes
belonging to the set are calculated using
STRING database [von Mering et al., 2005],
giving a combined association score to each
interaction. Scores are based on every kind of
links between a pair of genes, for example,
physical interaction or involvement in the same
metabolic pathway, therefore providing a quan-
titative approach. Then, the sum of all combined
association scores for every gene involved is
calculated, and this parameter is defined as
weighted number of links. The scores linking
genes i and j taken from STRING were summed
over j to provide a score for each gene i. Thus, the
scores for each gene indicate how strongly it is
connected to other genes of the same list.
Summation of interaction scores is a feature
not existent in the STRING algorithm. The
scores are basically connectivity scores but
resulting from several interaction types, one of
which is co-expression according the microarray
data, but others also contribute such as co-
evolution, physically detected interactions
between proteins encoded by the given genes,
and adjacent positions in known metabolic/
regulatory networks, but not ‘‘textmining’’,
referred to as ‘‘co-mentioning’’ in the literature.
Earlier, connectivity scores (however bitwise
rather than weighted) were used to evaluate
gene essentiality in yeast but with respect to
protein interaction networks only [Estrada,
2006]. Scores obtained after summation were

clustered using the ‘‘K-means’’ technique [Datta
and Datta, 2003; Tassi et al., 2005] to identify
the most important genes (‘‘Class A’’ or ‘‘leader
genes’’), as well as ‘‘Class B’’ genes. The K-
means clustering was performed either with
the in-house developed MATLAB-based soft-
ware [Sivozhelezov et al., 2006] or the FuzME
program [Minasny and McBratney, 2002], with
the fuzzy option switched off. Therefore the
algorithm allows predicting key genes respon-
sible for the given cellular process, identified by
their connectivity scores.

When we applied the leader gene identifica-
tion algorithm to the 520 genes subset of pool
dataset, and to its pro-tolerance and pro-
rejection subsets, the numbers of genes in each
class defined leader genes and class B (Fig.
ES3). Whenever boundaries between clusters
are near, where one gene may belong to several
classes, ‘‘fuzzy’’ clustering appears definitely
preferential. Such ‘‘moving’’ genes are shown in
blue boxes, which characterizes them as doubt-
ful (intermediate) and thereby possibly exclud-
ing them from leader genes or Class B genes
(Fig. ES3). Performance of MATLAB and
FuzME clustering algorithm implementations
with respect to the gene expression data was
done using the positive and negative subsets
from the difference CR–TOL values in the
normal (not logarithmic) scale (Figs. 2 and
ES4). Besides, we applied the threshold value
to reduce the noise. Initially, the threshold was

Fig. 1. Genes are numbered according to fluorescence
intensity. The fullchip difference in intensity between CR and
TOL is thereby giving a measure of their tolerance or rejection
propensity. The lines indicate threshold used to select pro-
tolerance and pro-rejection genes in the old full-chip database. In
the accompanying electronic supplement (Fig. ES1) the fre-

quency distribution is given with respect to healthy volunteers
HV of log 2 fluorescence intensity intCR/intHV for gene
expression of patients displaying rejection (A) and intTOL/intHV
for genes expressing tolerance (B). [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.
com.]
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set at 0.5. This resulted in 114 positive (pro-
rejection) and 376 negative (pro-tolerance)
genes. Expression leader genes were calculated
for both 114 pro-rejection and 376 pro-tolerance
gene sets. For both pro-rejection and pro-
tolerance Class A genes remain the same for
two algorithm implementations, although con-
vergence details vary. For tolerance, an extra
Class B gene is observed in the case of MATLAB.
Further, algorithms were compared for the
dataset unfiltered by threshold. For pro-
rejection, both the Class A and Class B lists as
well as convergence was the same. For pro-
tolerance, however, the results now showed two
extra Class B genes, with essential difference in
convergence. Different performances of the two
algorithm implementations could serve as an
indicator of poorer data reliability. The similar-
ity of the two clustering algorithms is however
confirmed in most cases both in terms of total
number of genes in Classes A and B (Table ES1)
and of the actual number of the corresponding
genes (Table ES2).

The ‘‘fullchip’’ (both pool and individual)
provides an opportunity to separate the ‘‘pro-
rejection’’ and ‘‘pro-tolerance’’ genes, and we
thereby initially mapped the 507 ‘‘ab initio’’
genes and 520 genes earlier tentatively identi-
fied from the ‘‘old fullchip’’ microarray as most
varying from CR patients to TOL patients, onto
an averaged ‘‘rejection-tolerance’’ graph of the
‘‘fullchip’’ (Fig. ES5). The 507 ‘‘ab initio’’ genes
were obtained by the following procedure

described in detail in [Sivozhelezov et al.,
2006]—Step 1: identification of initial gene list
by keyword searches of multiple databases;
Step 2: expansion of the list using interaction
networks; Step 3: crosschecking the newly
found genes against PubMed/Genbank links to
delete irrelevant genes; Repeat Steps 2 and 3
until convergence to obtain the final gene list.
Interestingly and comfortingly the 507 ‘‘ab
initio’’ independently computed genes [Sivozhe-
lezov et al., 2006] are distributed over the pool
fullchip plot as evenly as the 520 ‘‘microarray-
experimentally identified’’ genes. Conse-
quently, considering the highly flexible nature
of FuzME, which is entirely in the public
domain, we adopted it for further use in the in-
house developed software LEADERGENE (in
preparation).

In analyzing microarray-based data, FuzME
and MATLAB in most instances gave identical
results in identifying Class A and Class B genes
yielding occasional divergence of the two clus-
tering algorithm implementations only in such
discrimination but not in the total AþB genes
identification.

Validity of Microarray Data

The data validity is determined by counting
the fraction (%) of valid data, that is, data
actually present in the microarray for each
gene, separately for tolerance and rejection
samples. In the pool fullchip, the total numbers

Fig. 2. Divergence of two clustering algorithm implementations on the pro-tolerance subset of reliability-
filtered, and amplitude-filtered fullchip genes. Green, Class A genes according to MATLAB; yellow, Class B
according to MATLAB; dark blue, the rest of genes. Red circles indicate the 32 top-scoring genes identified by
the FuzME implementation. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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of the tolerance and rejection samples were 28
and 42, respectively. For example, for gene
ABCA1-1A, the fraction is 39/42¼ 93% among
the ‘‘rejection’’ samples, and 18/28¼ 64% among
the ‘‘tolerance’’ samples. Clustering analysis
according to that parameter showed that about
74% ‘‘pro-rejection’’ genes and 71% ‘‘pro-toler-
ance’’ genes were classified in the top category,
which we termed ‘‘reliable.’’ Three more catego-
ries were revealed, termed ‘‘medium,’’ ‘‘unreli-
able,’’ and ‘‘very unreliable.’’ Figure 3(top)
shows the presence of the genes in the four
categories. This limited validity does not appear
however to introduce any bias in the ‘‘pool
fullchip’’ data for either pro-TOL or pro-CR
genes (Fig. ES6), with the linear regression
giving 93% correlation coefficient with the slope
of the regression line close to unity.

To further check if unreliability could be
related to nomenclature problem, we calculated
the fraction of genes not adhering to HGNC
nomenclature in each of the four categories. If
the nomenclature problems did not affect the
reliability, we could expect the same fractions
for the ‘‘bad’’ genes as for all genes. This is not
the case. Even though the fractions of ‘‘bad
genes’’ are close to those for all genes, occur-
rence of ‘‘bad’’ genes relative to all genes
increases from category to category (Fig. 3,
bottom). The fact that the observed differences
are small is readily explained by the fact that
the disagreement with HUGO nomenclature
does not necessarily mean that the deposited
sample is unreliable. In fact, many of the
genes obviously not adhering to the HGNC
nomenclature in the ‘‘fullchip’’ microarray can

Fig. 3. Top: percentages of classes of genes belonging to the
four categories with respect to reliabilities in the old ‘‘fullchip’’
raw dataset. Color code is: blue, high reliability; brown, medium
reliability; yellow, low reliability, and cyan, very low reliability.
Bottom: the same values compared to fractions (%) of genes not
adhering to the HGNC nomenclature (‘‘bad’’) in each genes with
respect to total ‘‘bad’’ genes. Left: CR data. Right: TOL data.
Color code is: green, fraction of all genes belonging to the class as
in pie chart above, for example, 74% for high reliability in CR;
red, fraction of ‘‘bad’’ genes belonging to the given class among

all ‘‘bad’’ genes. CR dataset consists of 42 samples in total
and 6,864 genes, while TOL dataset consists 28 samples in
total and 6,864 genes. Reliability is given by the percentage
of proven expression data by GENEPIX in such genes for
70 microarray samples. No such distributions are observed in
the new fullchip raw dataset where over 98% of the genes
show instead reliable data with respect to the 70% reliability
criteria. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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be assigned using parsing and database
searches, for example, siUNC13Celegans is
resolved as the following gene, ‘‘Official Symbol:
UNC13B and Name: unc-13 homolog B (C.
elegans) [Homo sapiens].’’ Similarly, ‘‘siRA-
B11amemberR’’ is resolved as ‘‘Official Symbol:
RAB11A and Name: RAB11A, member RAS
oncogene family [Homo sapiens].’’ However,
some gene specifications used in the ‘‘old full-
chip’’ microarray contain sequences that have
been revoked from GenBank presumably by
their own authors, in which the GenBank record
contains a note that it has been discontinued,
one example being siVoltLOC121358. Such
nucleotides do not necessarily contain gene
sequences, and thus may well be the cause of
the entire absence of expression data, as well as
in poor reproducibility of the data when present.
Our findings are in agreement with the reported
generally poor (32–33% correlation coefficient)
reproducibility of the microarray data across
laboratories [Members of the Toxicogenomics
Research Consortium, 2005], which, however,
was increased to 56–59% after nomenclature
and data handling was standardized. Further
increase (in some cases up to 97%) was indeed
achieved by standardizing experimental proce-
dures. This is exactly what appears in our
individual FullChip, which, in contrast to the
pool fullchip, has as much as 98% genes passing
the 70% reliability criterium.

RESULTS AND DISCUSSION

Leader genes calculated from interactions of
pro-rejection and pro-tolerance genes from both
individual and pool microarrays are shown in
Table I, filtered in the logscale, and in Table II
filtered in the natural scale. From Table II
which is normal scale filtered at �0.2 for CR,
almost all Class A and Class B interaction-based
genes are also in the SAM list, while there are
only 3 out of 45 interaction-scored Class A and
Class B genes in the pool dataset. The drasti-
cally increased reliability of the individual
microarray dataset compared to the pool data-
set is causing improved compatibility of the
SAM analysis results with the results of scoring
the fullchip genes by interaction (Table II),
showing a potential for combined use of expres-
sion-based and interaction-based approaches.
From Table I, the log scale data appear to make
no sense at all with respect to interactions. Not
only the occurrence in the SAM-filtered data is

nearly zero, but also the Interaction Classes A
and B are completely different for individual
fullchip derived data compared with the pool
fullchip.

Variation of Filtering Parameters for
Leader Genes Identification

The microarray genes ‘‘0.2 filtered’’ were
ranked according to interaction scores, and the
resulting Class A and Class B are shown in
Table II. For TOL, 4 out 29 Interaction Class
AþB genes are in the SAM list while none was
present in the pool dataset. Interestingly,
molecular mechanisms of tolerance and rejec-
tions appear to be very different. For CR, many
genes are changing their expression, but they
interact not so strongly as the TOL ones.
Instead, TOL genes do not change their expres-
sion so much but they are connected stronger.
Results on the individual fullchip are simply
amazing, namely our non-statistical (expres-
sion-based) approach gives almost perfect com-
patibility with SAM data. The individual
dataset is extremely reliable according to our
criteria (70% valid samples). Namely, data for
6,743 out of 6,864 genes (98%) are reliable.
Moreover, the two TOL genes, namely CCL4L1
and BANK1, most frequently changing their
expression, are also the most SAM-significant.

Furthermore for Classes A and B genes: (1)
among pro-CR are ubiquitins and proteasomal
proteins, which are responsible for protein
degradation and are not occurring among pro-
TOL interactions; (2) instead among pro-TOL
genes, there are many ribosomal proteins and
translation factors (both initiation and elonga-
tion) genes responsible for protein synthesis;
(3) two out of four highly interacting pro-CR
genes also occurring in the 343 SAM list are
proteasomal proteins. Among TOL, one out of
two highly interacting pro-TOL is a ribosomal
protein; (4) genes responsible for transcription,
namely those encoding different subunits of
RNA polymerase, are high-scoring among both
pro-CR or pro-TOL genes.

This example shows the potential of combin-
ing statistical (SAM) microarray analysis with
non-statistical analysis as proposed herein,
aided by calculations of gene interaction net-
works. Obviously the statistical and non-
statistical approaches to microarray data
analysis should be further optimized since their
basic principles are drastically different, and
nomenclature issues should be resolved for
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more efficient scanning of gene interaction
databases. In order to identify the most
SAM-compatible gene set, we have changed
expression threshold and expression versus
interaction-based gene clustering (Table III).
From Table III, it appears that the number of
leader genes interaction-based at 0.2 expres-
sion threshold is identical to the SAM
derived leaders identified by the same FuzME
clustering algorithm. It is worth noting that
K-means clustering by FuzME is unfeasible (not

converged) for the 56 gene SAM-selected list
from the pool fullchip dataset, while perfectly
converged for the 343 gene SAM-selected list
from the individual fullchip SAM dataset
(Table ES3). Furthermore (Table IV) the occur-
rence of top interaction-scored genes among
SAM-derived gene list dramatically increases in
the individual with respect to the pool dataset,
up to 29 out of 68.

Interestingly to further corroborate the cho-
ice of this 0.2 expression filtering, Figure 4

TABLE I. ‘‘Interaction-Based’’ Class A and Class B Leader Genes in Kidney Transplant
Calculated from the Two Log-Scale, �0.2 Filtered Pro-Tolerance and Pro-Rejection Datasets,

Without Any Reliability Filtering

Pool fullchip,
pro-tolerance (Class A)

Pool fullchip,
pro-rejection (Class A)

Individual fullchip,
pro-tolerance (Class A)

Individual fullchip,
pro-rejection

FYN HDAC1 RB1 POLR2I
ATM HSPCA POLR2B POLR2D
TP53 STAT3 CREBBP PLCB3
PIK3R1 CSF3R GTF2F1 GTF2B
PTPN11 TNFRSF1A JAK3 HRAS
INSL3 SFRS1 GTF2E2
POLR2D SF3B1 TAF7
LCK HNRPH1 GTF2A1
IL6ST EGFR IL2RB
IL7R MAPK14 TAF5
EPOR PIK3CA TAF10
AR HNRPD LCK
PTPRC CPSF3

HNRPH2
CASP3
SFRS3
MADH4
FYN
HNRPR
SNRPA1
SF3A2
PIK3R1

Old fullchip, pro-tolerance
(Class B)

Old fullchip, pro-rejection
(Class B)

New fullchip, pro-tolerance
(Class B)

New fullchip,
pro-rejection

(Class B)

UBA52 JAK2 SHC1 IL4R
JUN RB1 PIP5K1A HNRPU
IL7 SYK ATF2 NME2
BLM MAP3K7 GTF2H2 RPL5
PTK2 MDM2 GTF2H3 DGKB
SRC IL13RA1 STAT1 DGKI
RPA3 PRKR PIK3CB LIPG
CCND2 FOS YWHAZ DGKD
TCEA1 ITGB2 IFNG DGKQ
HNRPA1 HSPA8 IRAK2 VAV1
FRS2 LRP1 MAP3K1 CD4
IL12B HNRPM CSNK1G2 EP300
SOCS4 HTATIP TRAF2
CTLA4 TUBA2 RPL22
INSR SAP30 RPL35
CDC45L HNRPK POLD1
MCM6 PSMD14 SNRP70
AKR1C3 PSMD8 THOC4
SRD5A2 PSMC1 DDB1
PLCB3 PSMB8 CDKN1A
IL11 NT5C3 PRKCQ
GHR PSME1 IL6
SFRS7 G22P1 TRAF6

UBE2I CD38

Genes occurring in SAM selected list are shown in bold.
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shows the pro-tolerance and pro-rejection genes
belonging to the 56 SAM-based genes derived
from the ‘‘pool fullchip’’ dataset mapped onto
the same ‘‘pool fullchip’’ plot. We see that a vast
majority of the 56 genes fall into the leftmost
and the rightmost wings of this distribution.
More extreme values are not included into the
SAM-based 56 gene set since there are too many
missing data for them, and consequently the
error is quite large, while SAM normalizes the
values by their errors. For example the most
‘‘pro-tolerance’’ gene GPR74 (bottom left point
on the diagram) is very unreliable: it is based
only on two ‘‘rejection’’ datapoints (�0.04 to
0.28, respectively) and one ‘‘tolerance’’ (6.48) out
of 70 possible variants (patients, arrays, hybrid-
ization, etc.). Such data are excluded by the
SAM software, since statistics used in SAM uses
the difference in expression levels divided by
error obtained for the particular genes, so such
scaled difference will be very low in genes like

GRP74. By applying the expression level-based
filters that we have introduced for our leader
gene identification, we excluded from further
consideration the genes that, by themselves, do
not appear indeed to discriminate between
tolerance and rejection (examples of such genes
are shown by arrows in Fig. 4, and the quasi-
random nature of their expression profiles are
shown in Fig. ES7).

SAM-Compatible Gene Set

For the SAM-compatible gene set, that is, the
genes �0.2 filtered by (CR–TOL) amplitude,
interaction map was calculated (Fig. 5). It is
immediately visible that the densest network is
formed around the cluster of interleukins. The
interleukin cascade is tightly connected with
two caspase genes, CASP1 and CASP8, which
are proteases essential in apoptosis [Danial and
Korsmeyer, 2004]. Note that caspase CASP1 is
among the pro-CR genes according to the SAM

TABLE III. Average Number of Pro-Tolerance and Pro-Rejection Genes Respectively With
TOL and CR Patients for the Three Different Microarray-Based Estimates, Two FuzME and

One SAM With Individual Fullchip Dataset

Set Analysis

CR TOL

Total
Class

A
Class

B Total
Class

A
Class

B Total

I nat scale interaction-based T6-I Unfiltered
no thresh

15 65 80 63 27 90 170

I nat scale interaction-based �0.1 thresh 20 24 44 18 21 39 83
I nat scale interaction-based T6-I Unfiltered

no thresh
15 65 80 63 27 90 170

I nat scale interaction-based �0.1 thresh 20 24 44 18 21 39 83
I nat scale interaction-based T4 �0.2 thresh

no reliab
11 28 39 18 11 29 68

I log scale interaction-based T3 �0.2 thresh 12 13 25 22 12 34 59
II error normalized SAM (similar

to logscale) clustered estimates
Weighted by

errors no
thresh

10 28 38 16 13 29 67

III nat scale expression-based Unfiltered
no thresh

14 17 31 9 13 22 53

III nat scale expression-based �0.1 thresh 13 13 26 9 8 17 43
III nat scale expression-based �0.2 thresh 13–14 18–17 31 9 8 17 48

It is worth to notice that (a) since nearly all genes (about 98%) have reliability above 70% in the Individual FullChip, results therefore
remain the same as ones for reliability unfiltered Fullchip; (b) since only 15 CR and 12 TOL genes have difference above 0.5 in the
Individual FullChip, clustering fails for �0.5 thresh no reliab.

TABLE IV. Occurrence of Top Interaction-Scored Genes Among SAM-
Derived Gene List in the Pool and Individual Datasets

Threshold

Pool fullchip dataset Individual fullchip dataset

Leaders in SAM
list Total leaders

Leaders in
SAM list Total leaders

None 0 59 6 170
0.1 1 73 9 83
0.2 4 86 29 68
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data. A distinct network of signal transduction
responsible for immune response is visible
spanning the entire map (Fig. 5), which could
be a starting point for further analysis of
molecular mechanisms of kidney graft tolerance
and rejection. This network contains kinases,
receptors, and other signal transducers. One of
those transducers, STAT5B, activator of tran-
scription, is connected, via N-myc contacting
protein (NMI, top left) to a network of genes
encoding proteasomal proteins not shown on the
diagram since their difference in expression is
slightly below 0.2, but still present among SAM
proCR genes. Proteasomes, as well as caspases,
participate in protein degradation and both are
pro-CR. Ribosomal proteins RPL36, RPS4Y1,
and RPS5 are also present (bottom right of the
diagram). Notably, these proteins are present in
the SAM gene list as pro-tolerance. Both CR and
TOL genes tend to group together apparently
forming pro-CR and pro-TOL sub-networks,
respectively. Such sub-networks likely indicate
gene sets that are upregulated or downregu-
lated in a concerted manner, specifically to
tolerance or rejection. Thus, the sub-network
centered on the RARA gene (top left of Fig. 5)

is pro-TOL with the exception of the pro-CR
PIN1. Similarly, the network around the genes
ITGB2 and TLR2 (bottom left) is pro-CR, again
with an exception of TLR10 (pro-TOL). Sim-
ilarly, the already mentioned networks involv-
ing caspases and interleukins are pro-CR with
the exception of the pro-TOL IL1A (bottom
center of Fig. 5).

One example of the opposite pattern is also
observed, namely a pro-TOL IL7R gene at the
very center of a pro-CR network, denoting its
strong regulatory role in the changes in gene
expression incurred during tolerance and rejec-
tion. Taken together, the data indicate that the
regulation mechanism of tolerance and rejec-
tion may involve networks of genes all showing
completely pro-CR or pro-TOL expression pat-
terns. However, these sub-networks are con-
nected to each other and pro-CR networks can
be regulated by a pro-TOL gene as in the
example of IL7R. Involvement of caspases in
cell death is widely known, so appearance of a
pro-rejection caspase network among the genes
differentially expressed during tolerance/rejec-
tion is in agreement with the finding that cell
death-related genes are among those changing

Fig. 4. Genes from the ‘‘fullchip’’ plotted according to their tolerance or rejection propensity, that is,
difference in expression in log scale between RC and TOL genes, with the 56 SAM-identified genes [Brouard
et al., 2005] marked. Arrows indicate genes included in the 56 gene dataset but possibly unable to
discriminate rejection/tolerance. Lines indicate thresholds used in selecting genes for ‘‘pro-tolerance’’ and
‘‘pro-rejection’’ leader gene calculations. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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their expression similarly in kidney and liver
graft. The interleukin networks seen in Figure 5
and especially the special role of IL7R observed
herein can be a part of the molecular basis of the
known role of interleukin 7 in graft survival
[Wang et al., 2006].

Thus a pattern emerges whereby increased
protein degradation is related to chronic rejec-
tion while increased protein synthesis is related
to tolerance. Generally, the microarray data in
combination with interaction analysis allow
identifying functional networks of co-expressed
proteins, which is not feasible using each of the
methods separately.

CONCLUSIONS OF PART I AND PART II

The overall conclusion is that there are many
genes in common in the highest interaction
genes derived from individual fullchip and
the 343 SAM-gene list. Notably, convergence
between the SAM approach and our non-
statistical approach becomes much better for
the individual dataset, in which the CR/TOL
fold changes are much lower, compared to the
old dataset. The primary reasons are (1) we use
expression levels in normal scale whereas SAM
uses expression levels normalized by their
errors (thus practically reducing the signal to

Fig. 5. Complete interaction map ‘‘no textmining’’ interaction map calculated for the ‘‘Class 1’’ reliable
genes and filtered by (CR–TOL) amplitude, as obtained from the new fullchip microarray datasets (see
Table II for their names and ranking according to their number of interactions). [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]
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noise level) and (2) SAM uses permutation
(random shuffling) of the data, and then
extracts significant genes by comparing the
permuted and non-permuted set. The SAM-
derived genes typically have shown small
differences of expression levels explained by
the fact that SAM package operates with
‘‘relative difference’’ d which is the actual
difference D divided by a sum of its standard
deviation s with an arbitrary constant s0, d¼
D/(sþ s0), which should make equally signifi-
cant the small but highly reproducible change
and the large but poorly reproducible change in
gene expression. Since physical grounds of such
an approach are unclear, we separated the two
parameters, that is, the magnitude and the
reliability, but using two independent filters,
one based on percentages of valid samples,
and the other on amplitude threshold. In this
respect, our approach is less arbitrary because
we calculate them using objective clustering
and the actual experimental fluorescence
distribution in the microarray. When proper
microarray reliability and proper expression
threshold are applied, we reach the conclusion
that it was necessary to acquire and analyze a
new, individual dataset, which proves quite
adequate to the task. Poor compatibility bet-
ween our approach and the SAM approach in
the pool dataset is apparently caused by the
essential difference between the two appro-
aches in that our two filtering parameters are
addressing the reliability and the amplitude of
the expression levels independently. Indeed,
two thresholds are present: one by amplitude,
and the other by reliability. Instead, both the
SAM denominator parameter and the SAM
significance threshold are related to reliability
and amplitude in a complicated manner. Sim-
ilarly to our approach, SAM has two adjustable
parameters, namely the above-described arbi-
trary constant in the denominator d¼D/(sþ s0)
for relative difference, and the significance
threshold. In this respect, our approach is less
arbitrary because we calculate them using
objective clustering and the actual experimen-
tal fluorescence distribution in the microarray.
When proper microarray reliability and proper
expression thresholds are applied, the compat-
ibility between the two approaches is very good
(Table IV). Furthermore, the final leader genes
map shed new light in the molecular mecha-
nisms controlling human kidney transplant.
Microarray experimentation becomes indeed

much more targeted and significant, by compar-
ing gene expression analysis with the analysis
of gene networks and interactions. In this
context, we successfully applied different var-
iants of the leader gene identification algorithm,
in order to identify the ones best representing
real gene networks.

All the findings described here, regarding
kidney transplant tolerance but also possibly
being extended to other systems, confirm the
existence of a small set of genes, having a higher
number of interactions among all the genes
involved in the cellular process and therefore
playing a central role. The identification of most
interacting genes can be of great importance in
the systematization and analysis of data, since
leader genes, considering also those largely
changing expression in different patients, form
a unique network: the mere changing in the
expression of a particular gene is not significant
by itself, but only if it is put in a proper
framework. This change can be often considered
as a consequence of a more complex network of
events, starting from leader genes, identified
with bioinformatics predictions, which often
do not vary their expression so much to be
identified as significant using pangenomic
arrays. However, microarray technology is a
necessary confirmation of every prediction
made by theoretical network analysis. On the
other hand, statistically processed microarray
data can serve as the starting point for network
analysis.

We introduce a non-statistical approach to
processing microarray data, in which we apply
K-means clustering to microarray data only
after independent filtering by both amplitude
and reliability that we define as percentage of
valid data for each gene. The need for non-
statistical treatment, in addition to statistical
treatment of microarray data, has been reco-
gnized time ago [Affymetrix Inc., 2004] because
‘‘microarrays are the unusual statistical case
where the number of tests greatly exceeds
the number of samples, so standard statistical
methods for multiple comparisons are pushed to
their limit.’’ To our knowledge this is the first
step in that direction. Results of the non-
statistical approach of microarray data inter-
pretation are widely different from the statis-
tical (SAM) approach for the pool dataset, but
are similar for the individual dataset. At
the moment, none of the three approaches
(Tables IV and ES3), namely the ‘‘ab initio’’
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approach, the microarray-based statistical
approach, and the microarray-based non-stat-
istical approach, has proved superior in identi-
fying the key genes responsible for kidney graft
rejection and/or tolerance, and showing that
those approaches must be used in a comple-
mentary manner, considering also that reasons
for the divergence of those approaches have
been identified. Moreover, Table IV of this
article showing average number of pro-toler-
ance and pro-rejection genes, respectively, with
TOL and CR patients for the three different
microarray-based estimates provides a basis for
combined sets of genes to be used in such
forthcoming studies. Besides, identification of
a pathway possibly important in controlling
mechanisms of tolerance and rejection has
demonstrated a high potential for the combina-
tion of approaches used herein. Genomics does
however suffer many pitfalls [Nicolini et al.,
2006] and only proteomics [Ramachandran
et al., 2006] represents the long range answer
to the basic molecular understanding and
to the clinical control of the human kidney
transplants.
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